DEVELOPMENT OF AN OCCUPATIONAL THERAPY SCALE OF UPPER LIMB OCCUPATIONAL PERFORMANCE FOLLOWING CVA # OCCUPATIONAL THERAPY MODEL - Occupational therapy practice with people following CVA focuses on overcoming activity limitations and participation restrictions people experience, by addressing the impairments and environmental barriers that limit participation. - One conceputalisation of occupational therapy is illustrated by the Occupational Performance Model (Australia) - The OPM(A) is the model underlying this research. #### **BACKGROUND** - Cerebrovascular accident (CVA) is a major health issue worldwide. One major consequence of CVA is upper limb dysfunction. - Although numerous methods exist, they focus on the impairment only. - No instrument was found that identifies and grades how a person who has had a CVA uses his or her affected upper limb to carry out his or her daily occupations, and the motor, sensory and cognitive operations that support that use. ## STUDY AIM The aim of this study was to validate a prototype scale. The upper Limb Performance Assessment (ULPA) (Chapparo & Ranka, 2002). PART ONE of the ULPA focuses on rating arm use during the performance of daily tasks and routines. Therapists rate their client's upper limb use on a continuum of five conditions ranging from 'no use' to 'primary use'. | No functional The arm/hand is The arm/hand is The arm/hand is The arm/hand | | Active As
Stabilis | | No Use | |--|---|----------------------------|-------------------|--------| | use of the used as a used to stabilise, used as a used for ta
arm/hand passive assist in hold and/or press counterforce typically
everyday tasks against objects performed | ilise, used as a used for tasks
press counterforce typically | used to sta
hold and/or | passive assist in | | These pictures represent each of the proposed levels of upper limb use. Observe the person's left arm in each of the pictures. PART TWO lists key minimum biomechanical, sensory-motor and cognitive/perceptual component operation criteria that were thought to predict specific upper limb use. The component operation criteria include: Biomechanical (range of motion and contracture) Sensory-motor (sensation and control over abnormal muscle tone) Cognitive/perceptual (consciousness, awareness of space and motor planning ability). The research questions addressed were as follows: - 1. Do the levels of upper limb use contained in the ULPA account for all possible instances of upper limb use following a CVA? - 2. Do any of the proposed key minimum biomechanical, sensory-motor and cognitive/perceptual component operations correlate with the levels of upper limb use contained in the ULPA? ## **METHOD** - Occupational therapist participants used a deconstructed version of the ULPA to collect data on 84 of their CVA clients over a six month period. - A two-part methodological, nonexperimental design incorporating both qualitative and quantitative methods was then used to answer each of the research questions. PART A involved determining the construct validity of **Part One** of the LILPA Data were examined using qualitative methods to determine if any instances of upper limb use were described by therapists that could not be accounted for by the construct categories described in **Part One** of the LUPA. PART B involved using quantitative methods to identify whether there is a correlation between how a person uses his or her upper limb (Part One of the ULPA) and key minimum biomechanical, sensorymotor and cognitive/perceptual component operations (Part Two of the ULPA). #### RESULTS - Analysis of the findings for this sample confirmed that all instances of upper limb use were accounted for on the ULPA. - Significant correlations between arm use and key component operations, and for hand use and key component operations were found. - A new version of the ULPA for arm and hand use was then developed representing these findings. UPPER LIMB PERFORMANCE ASSESSMENT #### MILITIOD ### of PRACT Although further research is required the refined ULPA that now exists: **IMPLICATIONS** - Can be used by occupational therapists to establish more realistic and incremental goals for arm and hand use following CVA - Can be used by occupational therapists to design intervention with a clearer idea of how well the upper limb is likely to be used be a person to carry out his or her daily tasks and routines. - Requires minimal time for administration and virtually no equipment to administer. - And is simple which means minimal cost to the healthcare system. #### RESEARCE This research is limited however it created opportunities and avenues for future research. With this and further research, an instrument such as the ULPA may be used effectively by therapists and researchers to gather data related to upper limb function and CVA. #### EDUCATION - Development of the ULPA through research will contribute to its effectiveness as an educational tool for undergraduate and postgraduate occupational therapy students. - A developed and refined ULPA can be used to enhance education regarding models for practice, upper limb function, recovery of upper limb function following CVA, component operations and their contribution to upper limb function as well as intervention strategies for CVA clients #### THEORY BUILDING The research supports the constructs, relationships and processes proposed in the Occupational Performance Model (Australia) (OPMA (A) (Chapparo & Ranka, 1997). # E PASSIVE ASSIST ACTIVE ASSIST: ACTIVE ASSIST: OUNTERFORCE PRIMARY USE | NO USE | PASSIVE ASSIST | ACTIVE ASSIST:
STABILISER | ACTIVE ASSIST:
COUNTERFORCE | PRIMARY USE | |---|---|---|---|--| | No Functional use
of the arm | The arm is used as
a passive assist in
everyday tasks | The arm is used to
stabilise hold &/or
press against objects | The arm is used to as a counterforce: push, lift, stabilise heavy objects. The arm is used to support the body | The arm is used for
tasks typically
performed by that
of the arm | | The arm is characterised
generally by flaceid muscle
tone at the shoulder
& elbow | Minimal muscle tone is
developing in the
shoulder | Moderately increased
muscle tone is present
in the ebow | Increased muscle tone is
resolving and voluntary
control is developing in the
shoulder to elbow | There are no problems with muscle tone in the shoulder & elbow | | Minimal muscle tone
is developing in the
shoulder | Moderately increased
muscle tone is present
in the shoulder | Severely increased
muscle tone is present
in the shoulder & elbow | Voluntary control of
forward reach is present
to gross voluntary control
of overhead reach patterns
are developing in the
shoulder & ellow | Voluntary control of forward reach is present & gross voluntary control of overhead reach patterns are developing in the shoulder. | | Moderately increased
muscle tone is present
in the ellow | Minimal voluntary
centrol of forward reach
is present in the
shoulder & elbow | Increased muscle tone
is resolving & voluntary
control is developing in
the shoulder & elbow | Power present can
withstand moderate (4)
resistance at the
shoulder & elsow | Yoluntary control of
forward reach is
overhead reach is present
in the shoulder & elbow | | No voluntary movement
is present in the
shoulder or elsow | No power is present
(muscle grade 0-1) in the
shoulder 0-elbow | Gross voluntary control
of forward reach patterns
is present in the
shoulder 6 elbow | Perceptual deficits
present: apracia 6-
form 6-space deficits,
but the client is aware
of them | Power present can
withstand moderate (4)
resistance at the
shoulder 6 elbow | | Minimal voluntary
control of forward
reach is present in
the shoulder to elbow | Some power is
developing (2-3) in
voluntary control
of reach in the ellow | Voluntary control of
forward reach is present
to gross voluntary control
of overhead reach patterns
are developing in the
shoulder & elbow | | Power present can
withstand significant (5)
resistance at the
shoulder 6 elbow | | No power is present
(muscle grade 0-11 in
the shoulder or elbow | Power present is sufficient
to withstand the weight
of grafty/minimal
resistance (5+)
in the shoulder | Some power is
developing [2-3] in the
voluntary control of reach
in the shoulder | | Position sense is
present in the
shoulder & elbow | | Some power is
developing (2-5) in the
voluntary control of
reach in the
shoulder 6 elbow | Marked sensory deficits
exist in the arm | Power present is sufficient
to withstand the recight
of gravity/minimal,
resistance (3+1 in the
shoulder 6 elbow | | Oriented to person, place & time | | Marked sensory deficits exist in the arm | Protective sensation
(sharp/dull or hot/cold)
is present in the arm | Power present can
withstand moderate (4)
resistance at the shoulder | | Perceptual deficits are
present: apeaxia &
form & space deficits,
& not compensated for | | Sensation in the arm is
at the level of sensory
awareness only | Semi-conscious
or drowsy | Oriented to person
place & time | | Perceptual deficits are
present: form & space
deficits, but client
compensates for them | | COMATOSE | Conscious & alert | Perpetual deficits is
present: neglect, but
the client is aware of | | No major perceptual
deficits are present | | Semi-conscious
or drawsy | Perceptual deficits are
present: form is space
deficits, but the client
is aware of them | Perceptual deficits are
present: form 6 space
deficits, but the client
compensates for them | | | | Conscious & alert | | | | | | Oriented to 2/5
(person, place 6-time) | | | | | | Perceptual deficits are
present: neglect, apraxis,
form is space deficits is
not compensated for | | | | | | Perceptual deficit is
present: neglect, but
client is aware of it | | | | | | Perceptual deficits are
present: neglect &
aprassis, but the client
compensates for them | | | | | # REFERENCES Chapparo, C., & Ranka, J. (1997). Occupational performance model (Australia): A description of constructs and structure. Sydney: School of Occupation and Leisure Sciences, The University of Sydney. Chapparo, C., & Ranka, J. (2002). Upper limb performance assessment (ULPA). School of Occupation and Leisure Sciences, The University of Sydney.